190 research outputs found

    Electromagnetic energy penetration in the self-induced transparency regime of relativistic laser-plasma interactions

    Get PDF
    Two scenarios for the penetration of relativistically intense laser radiation into an overdense plasma, accessible by self-induced transparency, are presented. For supercritical densities less than 1.5 times the critical one, penetration of laser energy occurs by soliton-like structures moving into the plasma. At higher background densities laser light penetrates over a finite length only, that increases with the incident intensity. In this regime plasma-field structures represent alternating electron layers separated by about half a wavelength by depleted regions.Comment: 9 pages, 4 figures, submitted for publication to PR

    A microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory

    Get PDF
    The SNARE-mediated vesicular transport pathway plays major roles in synaptic remodeling associated with formation of long-term memories, but the mechanisms that regulate this pathway during memory acquisition are not fully understood. Here we identify miRNAs that are up-regulated in the rodent hippocampus upon contextual fear-conditioning and identify the vesicular transport and synaptogenesis pathways as the major targets of the fear-induced miRNAs. We demonstrate that miR-153, a member of this group, inhibits the expression of key components of the vesicular transport machinery, and down-regulates Glutamate receptor A1 trafficking and neurotransmitter release. MiR-153 expression is specifically induced during LTP induction in hippocampal slices and its knockdown in the hippocampus of adult mice results in enhanced fear memory. Our results suggest that miR-153, and possibly other fear-induced miRNAs, act as components of a negative feedback loop that blocks neuronal hyperactivity at least partly through the inhibition of the vesicular transport pathway.Brain & Behavior Research Foundation (Young Investigator Award)JPB Foundatio

    Repeated delivery of chlorhexidine chips for the treatment of periimplantitis: A multicenter, randomized, comparative clinical trial.

    Get PDF
    "This is the peer reviewed version of the following article:Machtei, EE, Romanos, G, Kang, P, et al. Repeated delivery of chlorhexidine chips for the treatment of periimplantitis: A multicenter, randomized, comparative clinical trial. J Periodontol. 2020; 1– 10. https://doi.org/10.1002/JPER.20-0353 which has been published in final form at doi: https://doi.org/10.1002/JPER.20-0353 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."BACKGROUND: Periimplantitis is a challenging condition to manage and is frequently treated using non-surgical debridement. The local delivery of antimicrobial agents has demonstrated benefit in mild to moderate cases of periimplantitis. This study compared the safety and efficacy of Chlorhexidine gluconate 2.5 mg chip (CHX chips) as an adjunctive treatment to sub-gingival debridement in patients afflicted with periimplantitis. METHODS: A multi-center, randomized, single-blind, two-arm, parallel Phase-3 study was conducted. Periimplantitis patients with implant pocket depths (IPD) of 5-8 mm underwent sub-gingival implant surface debridement followed by repeated bi-weekly supra-gingival plaque removal and Chlorhexidine chips application (ChxC group) for 12 weeks, or similar therapy but without application of ChxC (control group). All patients were followed for 24 weeks. Plaque and gingival indices were measured at every visit while IPD, recession and bleeding on probing were assessed at 8,12,16,24 week. RESULTS: 290 patients were included: 146 in the ChxC group and 144 in the control. At 24 weeks, a significant reduction in IPD (p = 0.01) was measured in the ChxC group (1.76 ± 1.13 mm) compared to the control group (1.54 ± 1.13 mm). IPD reduction of ≥2 mm was found in 59% and 47.2% of the implants in the ChxC and control groups, respectively (p = 0.03). Changes in gingival recession (0.29 ± 0.68 mm vs. 0.15 ± 0.55 mm, p = 0.015) and relative attachment gain (1.47 ± 1.32 mm and 1.39 ± 1.27 mm, p = 0.0017) were significantly larger in the ChxC group. Patients in the ChxC group that were <65 years exhibited significantly better responses (p<0.02); likewise, non-smokers had similarly better response (p <0.02). Both protocols were well tolerated, and no severe treatment-related adverse events were recorded throughout the study. CONCLUSIONS: Patients with periimplantitis that were treated with an intensive treatment protocol of bi-weekly supra-gingival plaque removal and local application of Chlorhexidine chips had greater mean IPD reduction and greater percentile of sites with IPD reduction of ≥2 mm. as compared to bi-weekly supra-gingival plaque removal. (Clinicaltrials.gov NCT02080403). This article is protected by copyright. All rights reserved

    Micron-scale mapping of megagauss magnetic fields using optical polarimetry to probe hot electron transport in petawatt-class laser-solid interactions

    Get PDF
    The transport of hot, relativistic electrons produced by the interaction of an intense petawatt laser pulse with a solid has garnered interest due to its potential application in the development of innovative x-ray sources and ion-acceleration schemes. We report on spatially and temporally resolved measurements of megagauss magnetic fields at the rear of a 50-μm thick plastic target, irradiated by a multi-picosecond petawatt laser pulse at an incident intensity of ~1020 W/cm2. The pump-probe polarimetric measurements with micron-scale spatial resolution reveal the dynamics of the magnetic fields generated by the hot electron distribution at the target rear. An annular magnetic field profile was observed ~5 ps after the interaction, indicating a relatively smooth hot electron distribution at the rear-side of the plastic target. This is contrary to previous time-integrated measurements, which infer that such targets will produce highly structured hot electron transport. We measured large-scale filamentation of the hot electron distribution at the target rear only at later time-scales of ~10 ps, resulting in a commensurate large-scale filamentation of the magnetic field profile. Three-dimensional hybrid simulations corroborate our experimental observations and demonstrate a beam-like hot electron transport at initial time-scales that may be attributed to the local resistivity profile at the target rear

    Eigenmodes and growth rates of relativistic current filamentation instability in a collisional plasma

    Full text link
    I theoretically found eigenmodes and growth rates of relativistic current filamentation instability in collisional regimes, deriving a generalized dispersion relation from self-consistent beam-Maxwell equations. For symmetrically counterstreaming, fully relativistic electron currents, the collisional coupling between electrons and ions creates the unstable modes of growing oscillation and wave, which stand out for long-wavelength perturbations. In the stronger collisional regime, the growing oscillatory mode tends to be dominant for all wavelengths. In the collisionless limit, those modes vanish, while maintaining another purely growing mode that exactly coincides with a standard relativistic Weibel mode. It is also shown that the effects of electron-electron collisions and thermal spread lower the growth rate of the relativistic Weibel instability. The present mechanisms of filamentation dynamics are essential for transport of homogeneous electron beam produced by the interaction of high power laser pulses with plasma.Comment: 44 pages, 12 figures. Accepted for publication in Phys. Rev.

    Innovative education and training in high power laser plasmas (PowerLaPs) for plasma physics, high power laser matter interactions and high energy density physics: experimental diagnostics and simulations

    Get PDF
    The second and final year of the Erasmus Plus programme "Innovative Education and Training in high power laser plasmas", otherwise known as PowerLaPs, is described. The PowerLaPs programme employs an innovative paradigm in that it is a multi-centre programme where teaching takes place in five separate institutes with a range of different aims and styles of delivery. The "in class" time is limited to four weeks a year, and the programme spans two years. PowerLaPs aims to train students from across Europe in theoretical, applied, and laboratory skills relevant to the pursuit of research in laser plasma interaction physics and inertial confinement fusion (ICF). Lectures are intermingled with laboratory sessions, and continuous assessment activities. The programme, which is led by workers from the Hellenic Mediterranean University, and supported by co-workers from Queens University Belfast, the University of Bordeaux, the Czech Technical University in Prague, Ecole Polytechnique, the University of Ioannina, the University of Salamanca, and the University of York, has just finished its second and final year. Six Learning Teaching Training (LTT) activities have been held, at the Queens University Belfast, the University of Bordeaux, the Czech Technical University, the University of Salamanca, and the Institute of Plasma Physics and Lasers (CPPL) of the Hellenic Mediterranean University. The last of these institute hosted two two-week long Intensive Programmes (IPs), whilst the activities at the other four universities were each five days in length. In addition to this a "Multiplier Event" was held at the University of Ioannina, which will be briefly described. In this second year the work has concentrated upon training in both experimental diagnostics and simulation techniques appropriate to the study of Plasma Physics, High Power Laser-Matter Interactions and High Energy Density Physics. The nature of the programme will be described in detail and some metrics relating to the activities carried out will be presented. In particular this paper will focus upon the overall assessment of the programme

    Innovative Education and Training in high power laser plasmas (PowerLaPs) for plasma physics, high power laser-matter interactions and high energy density physics - Theory and experiments

    Get PDF
    The Erasmus Plus programme 'Innovative Education and Training in high power laser plasmas', otherwise known as PowerLaPs, is described. The PowerLaPs programme employs an innovative paradigm in that it is a multi-centre programme where teaching takes place in five separate institutes with a range of different aims and styles of delivery. The 'in class' time is limited to four weeks a year, and the programme spans two years. PowerLaPs aims to train students from across Europe in theoretical, applied and laboratory skills relevant to the pursuit of research in laser-plasma interaction physics and inertial confinement fusion (ICF). Lectures are intermingled with laboratory sessions and continuous assessment activities. The programme, which is led by workers from the Technological Educational Institute (TEI) of Crete, and supported by co-workers from the Queen's University Belfast, the University of Bordeaux, the Czech Technical University in Prague, Ecole Polytechnique, the University of Ioannina, the University of Salamanca and the University of York, has just completed its first year. Thus far three Learning Teaching Training (LTT) activities have been held, at the Queen's University Belfast, the University of Bordeaux and the Centre for Plasma Physics and Lasers (CPPL) of TEI Crete. The last of these was a two-week long Intensive Programme (IP), while the activities at the other two universities were each five days in length. Thus far work has concentrated upon training in both theoretical and experimental work in plasma physics, high power laser-matter interactions and high energy density physics. The nature of the programme will be described in detail and some metrics relating to the activities carried out to date will be presented

    Cytoplasmic TAF2-TAF8-TAF10 complex provides evidence for nuclear holo-TFIID assembly from preformed submodules

    Get PDF
    General transcription factor TFIID is a cornerstone of RNA polymerase II transcription initiation in eukaryotic cells. How human TFIID-a megadalton-sized multiprotein complex composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs)-assembles into a functional transcription factor is poorly understood. Here we describe a heterotrimeric TFIID subcomplex consisting of the TAF2, TAF8 and TAF10 proteins, which assembles in the cytoplasm. Using native mass spectrometry, we define the interactions between the TAFs and uncover a central role for TAF8 in nucleating the complex. X-ray crystallography reveals a non-canonical arrangement of the TAF8-TAF10 histone fold domains. TAF2 binds to multiple motifs within the TAF8 C-terminal region, and these interactions dictate TAF2 incorporation into a core-TFIID complex that exists in the nucleus. Our results provide evidence for a stepwise assembly pathway of nuclear holo-TFIID, regulated by nuclear import of preformed cytoplasmic submodules

    Stochastic single vehicle routing problem with delivery and pick up and a predefined customer sequence

    No full text
    In this paper we study the routing of a single vehicle that delivers products and picks up items with stochastic demand. The vehicle follows a predefined customer sequence and is allowed to return to the depot for loading/unloading as needed. A suitable dynamic programming algorithm is proposed to determine the minimum expected routing cost. Furthermore, the optimal routing policy to be followed by the vehicle's driver is derived by proposing an appropriate theorem. The efficiency of the algorithm is studied by solving large problem sets.Logistics Stochastic vehicle routing Pick up and delivery Dynamic programming
    corecore